
I-350 
International Scientific Conference “UNITECH 2023” – Gabrovo 

  

INTERNATIONAL  SCIENTIFIC  CONFERENCE 
17-18  November 2023, GABROVO 

 

 
 

APPLICATION OF NEURAL NETWORKS IN ANDROID 
APPLICATIONS FOR OBJECT RECOGNITION IN REAL TIME 

 
Zeljko Jovanovic1, Filip Petrovic1, Mihailo Knezevic1  

 

1 University of Kragujevac, Faculty of technical sciences Čačak, Serbia 
 
 

Abstract 
This paper describes how neural networks can be used in Android applications. Specifically, an educational 

application for language learning based on a neural network model was developed. Several neural network 
models were trained for object detection as part of the practical part. With the help of these models, an 
application that detects objects in real-time and translates them into the desired language was created. Several 
topics were explored in this paper, such as neural networks, artificial intelligence, android platform, 
TensorFlow and TensorFlow Lite libraries and how they work, and the concept of detection, i.e., object 
recognition. In addition to the theoretical part, which is necessary to understand how neural networks work and 
the Android platform, each step of the practical demonstration is described in detail. This includes preparing the 
working environment, training the data set, training the neural network, and developing the Android application.   

 
Keywords: Android, TensorFlow, neural network, object recognition, image processing. 
 
 
INTRODUCTION 

   According to the 2022 report, there are 
6.65 billion smartphone users in the world. 
That's 86% of the global population. As of 
2016, the number of users has grown by 
50%, from 3.67 billion (45% of the total 
population at the time). The growth trend is 
expected to continue, reaching 7.52 billion 
users by 2026. [1], 85% of the time users 
spend in applications [1]. The average 
American spends at least 5 hours on the 
phone a day [1]. Mobile applications, 
however, have a huge potential for useful 
applications. The hardware capabilities of 
phones are increasing, so the possibilities 
for realizing more complex activities on 
phones have become possible. The use of 
artificial intelligence techniques and the 
application of neural network algorithms is 
becoming possible on smartphones. This 
paper aims to present the use of neural 
networks in the development of Android 
applications for real-time object detection 
and recognition. Edge AI frameworks like 
TensorFlow Lite and Core ML play a 

crucial role in deploying lightweight 
models on Android devices, ensuring 
efficiency and faster inference. 
 
NEURAL NETWORKS 

 Neural networks, a fundamental 
component of artificial intelligence [2][3], 
have seen significant integration within the 
realm of Android app development. In the 
Android applications development neural 
network are mostly used in: 
• Image Recognition and Classification: 

object detection, facial recognition, and 
scene understanding, automatically 
categorize and tag images, enhancing 
user experience. 

• Natural Language Processing (NLP) 
and Text Analysis: sentiment analysis, 
chatbots, language translation, and 
speech recognition. 

• Recommendation Systems: offer 
personalized recommendations in 
various domains like movies, music, e-
commerce, and more. Apps like Netflix 
and Spotify leverage such recommendation  

  2023 



I-351 
International Scientific Conference “UNITECH 2023” – Gabrovo 

systems to enhance user engagement. 
• Gesture Recognition and Human 

Activity Recognition: gestures, poses, 
movements types in fitness apps, 
gaming, and accessibility features. 

• Augmented Reality (AR) and Virtual 
Reality (VR): object recognition, 
tracking, and scene understanding, 
enabling compelling AR and VR 
experiences.  

• Healthcare and Medical Applications: 
medical image analysis, disease 
diagnosis, and personalized health 
recommendations, identifying 
anomalies in medical images, aiding 
medical professionals in diagnostics. 

For successful usage in Android 
application, it is necessary to create and 
deploy lightweight models, ensuring 
efficiency and faster user interface. Support 
for neural networks on Android devices has 
been available since Android 8.1, released 
in 2017. Google created the Android Neural 
Networks API (NNAPI) [4]. This API 
represents a low-level interface that allows 
high level libraries to work with that 
interface. Most popular ones: 

TensorFlow Lite: Google's TensorFlow 
Lite is most widely used libraries for 
deploying machine learning models on 
mobile and embedded devices, including 
Android. It allows the execution of pre-
trained models with low latency. 

PyTorch Mobile: PyTorch, developed 
by Facebook, provides a mobile version 
that allows the deployment of PyTorch 
models on Android devices. 

ML Kit for Firebase: This is a mobile 
SDK provided by Google that integrates 
various machine learning features, 
including image labeling, text recognition, 
barcode scanning, and more, making it easy 
to use pre-built models without having to 
train models from scratch. 

NCNN (The NCNN Neural Network 
Computation Framework): NCNN is a 
high-performance neural network inference 
framework optimized for mobile platforms. 
It's efficient and can be used to deploy 
models on Android. 

Caffe2: Caffe2, now integrated into 
PyTorch, is a lightweight, modular 
framework for machine learning. It's 
suitable for deploying models on Android 
devices. 

MACE (Mobile AI Compute Engine): 
MACE is another inference framework 
designed specifically for mobile devices. It 
supports TensorFlow, Caffe, and ONNX 
models. 

When choosing a neural network library 
for an Android app, factors such as model 
compatibility, ease of use, performance on 
mobile devices, community support, and 
documentation need to be considered. 

TensorFlow Lite was chosen for testing 
and implementation. The rest will be tested 
in future. 
 
TENSORFLOF 

 TensorFlow [5] is an open-source 
machine learning framework developed by 
the Google Brain team. It's designed to 
facilitate the development and deployment 
of machine learning models, particularly 
neural networks. TensorFlow allows 
developers to build, train, and deploy 
various machine learning models for 
diverse applications ranging from image 
and speech recognition to natural language 
processing and recommendation systems. 

At its core, TensorFlow operates on the 
concept of tensors, which are 
multidimensional arrays representing the 
data flow through a computational graph. 
The framework supports deep learning 
models through an extensive collection of 
pre-built operations and functions, making 
it highly versatile and adaptable for 
different use cases. The output of the model 
can be as simple as a number that 
determines the sequence number of the 
image class (0 = dog, 1 = cat, 2 = bird), or it 
can be a complex result, such as the frames 
of detected objects in the image, with a hit 
probability expressed by 0 to 1. 

Key features of TensorFlow include its 
flexibility, scalability, and portability. It 
provides both high-level APIs like Keras 
[6] for quick model prototyping and low-



I-352 
International Scientific Conference “UNITECH 2023” – Gabrovo 

level APIs for fine-grained control over the 
neural network architecture. TensorFlow 
also supports distributed computing, 
allowing models to be trained and deployed 
across multiple devices or distributed 
computing environments. 

Moreover, TensorFlow has a vast and 
active community, contributing to its 
continuous improvement, extensive 
documentation, and a rich ecosystem of 
tools and libraries. This ecosystem [7][8] 
includes TensorFlow Serving for model 
serving, TensorFlow Lite for mobile and 
edge devices, TensorFlow.js for web-based 
applications, and TensorFlow Hub for 
model sharing and reuse. 
TensorFlow in object detection: 

Object detection is a machine learning 
task to identify the presence and location of 
multiple classes of objects within an image. 
An object detection model is trained on a 
dataset containing a set of known objects. 
[9] 

The trained model accepts image frames 
as input and attempts to categorize objects 
within the image based on a data set of 
known classes that it was trained to 
recognize. For each image frame, the object 
detection model provides a list of objects it 
detects, the location of the frame for each 
detected object, and a value indicating the 
probability that the model successfully 
classified the object [9][10]. 
TensorFlow usage environment 

For practical usage, it is necessary to 
prepare a working environment in which all 
necessary tools are installed. It is necessary 
to consider the hardware and software 
elements of the computer in order to 
prepare the environment in the most 
efficient way possible. 

All scripts for creating data sets and 
training networks are written in Python 
version 3.8.0, because it is compatible with 
version 2.8.0 of TensorFlow which is used 
for training the neural network. 

Installation of the Windows Subsystem 
for Linux (WSL)[11] enabled efficient 

working environment. The recommended 
approach for installing TensorFlow with 
graphics card support is by using the 
Miniconda environment [12][13]. 

 
DATASET FOR NN TRAINING 

FiftyOne [14] is an open-source project 
that allows the creation of high-quality 
datasets and computer vision models for 
600 different classes. It provides a graphical 
user interface that enables datasets 
visualization of and interpret models faster 
and more effectively. Some of the 
parameters that can be defined: 

• Name of the data set.(Open Images 
V6, V7, Kinetic 700…) 

• Split, i.e. whether a data set is being 
created for training, testing or 
validation 

• Label types 
• Sample classes, ie. object names 
• Maximum number of samples 
 Example Python code for downloading 

a dataset for training object detection, from 
the Open Images V7 dataset is presented 
below. The resulting dataset consist of five 
hundred samples, featuring dogs and/or cats 
and/or beer classes: 

 

dataset = foz.load_zoo_dataset( 
    "open-images-v7", 
    split="train", 
    label_types=["detections"], 
    classes=["Cat", "Dog", "Beer"], 
    max_samples=500 
) 

 

Presentation of the selected dataset is 
shown in Fig. 1.  

 

 
Fig. 1. Dataset presentation in FiftyOne 

application 



I-353 
International Scientific Conference “UNITECH 2023” – Gabrovo 

The dataset is downloaded in next percent 
distribution: 80% for the training, 10% for 
the test, and 10% for the validation. 

For the neural network model training 
several datasets presented in Table 1. are 
used. 

 
Table 1. Used datasets 

No. Number of classes Number of 
samples 

1 3 “Cat", "Dog", "Beer" 500 
2 3 “Car", "Person", "Truck" 500 
3 170 5000 
4 170 20000 
Dataset 3 and 4 contained 170 various classes. 

 
NN MODEL TRAINING 

Four model architectures in eight 
combinations are trained. Parameters set for 
each model during training, namely: 

• Model architecture 
• Dataset 
• Number of epochs 
• Batch size 
Training of models is very time 

consuming and mostly depends of model 
architecture and number of samples.  

Technical specification of a computer 
used for neural network model training are: 
processor: Intel Core i5 11400H, graphic card: 
NVIDIA GeForce RTX 3050Ti with 4GB 
RAM and 2560 Cuda cores, RAM memory: 
32 GB, operating system: Windows 11.  

All parameters for model training are 
shown in Table 2. Batch size was set to the 
maximum that the computer could support 
for other given parameters. 

Table 2. Parameters setup for models training 

No. Model 
architecture Dataset Number 

of epochs 
Batch 
size 

1 EfficientDet 
Lite0 1 10 8 

2 EfficientDet 
Lite0 1 20 8 

3 EfficientDet 
Lite0 2 50 8 

4 EfficientDet 
Lite1 2 50 4 

5 EfficientDet 
Lite2 1 50 2 

6 EfficientDet 
Lite3 2 50 1 

7 EfficientDet 
Lite0 3 50 4 

8 EfficientDet 
Lite0 4 50 4 

All these architectures are derived from the 
EfficientDet Lite architecture. EfficientDet 
Lite0 is the smallest and simplest, but the 
least accurate. Each subsequent one has 
more layers and is more precise, but takes 
up more space. Also EfficientDet Lite0 is 
the fastest and requires the least hardware 
resources, while each subsequent one is 
slower because it requires more memory 
and computing power. EfficientDet Lite0 is 
used where real-time, lag-free processing is 
critical, and EfficientDet Lite4 where 
accuracy is more important than speed. 
 
NN MODEL EVALUATION 

All 8 combinations of settings presented 
in Table 2. are tested and evaluated with 
Keras - The high-level API for 
TensorFlow[5][6]. Its 
tf.keras.Model.evaluate method provide 
results for every evaluated class in a range 
from 0 to 1. Results for the first six are 
shown in Table 3. Results for detection of 
selected classes vary from 0.38 to 0.7. 
EfficientDet Lite3 in theory should achieve 
best results but that was not the case in all 
scenarios. Results for the parameter setup 7 
and 8 from Table 2. are not presented in 
Table 3 since there are 170 classes tested. 
Overall results for No. 7 test case were very 
bad (average 0.1) since the 5000 number of 
samples for training of 170 classes was too 
low. Overall results for No. 8 test case were 
significantly better (average 0.25, but some 
classes > 0.5) but not enough for successful 
usage for all classes. Training phase for No. 
8 test case last for 10 hours. Training with a 
larger dataset would last much longer and is 
not implemented and tested in this 
application. 

Table 3. Models’ evaluation results 
Parameters setup 

No. Class 1 Class 2 Class 3 

1 0.38 0.52 0.53 
2 0.49 0.66 0.65 
3 0.49 0.66 0.7 
4 0.52 0.68 0.65 
5 0.58 0.67 0.59 
6 0.38 0.54 0.7 



I-354 
International Scientific Conference “UNITECH 2023” – Gabrovo 

ANDROID APPLICATION FOR 
OBJCET RECOGNITION 

 For a practical demonstration, a native 
Android application developed with Java 
programming language was created. It is 
built on MVVM (Model-View-ViewModel) 
architecture. The model part presents 
models and data sources. View is the 
presentation layer. ViewModel serves to 
connect these two layers.  

The application uses neural network 
model in an innovative way to detect and 
recognize objects at which the phone's 
camera is pointed. A trained neural network 
model is developed with the help of the 
TensorFlow Lite library. Frames from the 
camera are sent to the input of the model, 
and the output of the model gives data 
about detected objects. Location and name 
of the object is presented on the screen in 
real time. Projects detection package 
contain classes used to integrate the neural 
network model. These classes pass frames 
from the camera, and returns the results of 
the model. In the assets folder there is a 
trained neural network model.  

The application provides the user with 
information about the detected objects in 
the local language and in the selected 
desired language for translation. Google's 
Cloud Translation API is used for 
translations. The application must first ask 
the user for access to the camera, since any 
application that accesses the camera must 
first ask for the user's permission to have 
access. 

 
Translate functionality of the application 

is developed as a demo for successful NN 
model integration in Android applications. 
Only classes that are trained could be 
detected and translated. Application 
versions with NN model trained with the 
first dataset should detect "Cat", "Dog" or 
"Beer" objects successfully. Application 
versions with NN model trained with 
second dataset should detect “Car", 
"Person" or a "Truck "objects successfully. 

All 8 model combinations presented in 
Table 2. are tested in practice.  

Application usage presented in Fig. 2. 
uses No. 3 parameter setup from Table 2. 
Application usage presented in Fig. 3. uses 
No. 4 parameter setup from Table 2.   They 
had best performance and detection results 
balance. 

As presented in Fig. 2. “Cat” and “Dog” 
object were successfully detected while 1 of 
3 “Beers” was not detected and recognized.   

 
Fig. 2. Android application usage in object 

detection for parameter setup No 3 from Table 
2. 

 
Fig. 3. Android application usage in object 

detection for parameter setup No 4 from Table 
2. 

On the Fig. 3 all objects were successfully 
detected. There was no problem with 
multiple “Car” object occurrence. Even 
model evaluation results could be better 
application usage in practice for parameter 
setup No 4 from Table 2. was successful in 
almost every situation with trained classes. 

Others application versions showed 
lower results in practice. That was expected 
since model evaluation results presenter in 
Table 3. were lower for them. Third and 
fourth datasets contained 170 classes but 
for successful detection of all 170 classes 
larger number of samples should be used 
for training. Training phase for No. 8 test 
case from Table 2. lasted for 10 hours. 
Training with a larger dataset would last 
much longer and is not implemented and 
tested in this application. Application usage 
on object which classes are not trained 



I-355 
International Scientific Conference “UNITECH 2023” – Gabrovo 

showed unexpected results or didn’t show 
any detected object.  
 
CONCLUSION 

This paper presented application of neural 
network models is Android application in real 
time usage. TensorFlow was successfully 
implemented and object were detected and 
recognized. 

The quality of the trained model depends 
on the number of classes, the number of 
samples for each class in the dataset, the 
architecture of the model, and the number of 
epochs. Lower class dataset sample number 
or uneven data set for training produced 
lower results in object recognition. Thus, 
accuracy issues could be addressed by 
selection of desired classes, improving the 
dataset creation and preparation scripts. 
Open Images V7 consists of 9 million 
images occupying 500 gigabytes of space. 
Selection of desired classes for detection 
and increasing number of samples for each 
class will increase the results of object 
detection. 

Application usage in object detection 
could be very successful if classes for 
detection are selected and a NN model is 
trained with larger number of samples with 
selected classes.  

 
ACKNOWLEDGEMENT 

The research in this paper was supported 
by the Ministry of Education, Science and 
Technological Development of the 
Republic of Serbia, as part of the Project 
grant no. 451-03-47/2023-01/200132 with 
University of Kragujevac - Faculty of 
Technical Sciences Čačak. 

 
REFERENCE 
[1] 40 Fascinating Mobile App Industry 

Statistics [2023]: The Success Of Mobile 
Apps In The U.S, Retrieved from: 
https://www.zippia.com/advice/mobile-app-
industry-statistics/, Date: 01.08. in 2023 

[2] Charu C. Aggarwal: Neural Networks and 
Deep Learning, 2018. 

[3] Ian Goodfellow, Yoshua Bengio, Aaron 
Courville: Deep Learning (Adaptive 

Computation and Machine Learning series), 
2016. 

[4] Neural Networks API, downloaded from: 
https://developer.android.com/ndk/guides/n
euralnetworks, dated: 08/02/2023. 

[5] Amita Kapoor, Antonio Gulli, Sujit Pal, 
Francois Chollet: Deep Learning with 
TensorFlow and Keras: Build and deploy 
supervised, unsupervised, deep, and 
reinforcement learning models, 3rd Edition, 
2022. 

[6] Rowel Atienza: Advanced Deep Learning 
with TensorFlow 2 and Keras: Apply DL, 
GANs, VAEs, deep RL, unsupervised 
learning, object detection and segmentation, 
and more, 2nd Edition, 2020. 

[7] Revathi Gopalakrishnan, Avinash 
Venkateswarlu: Machine Learning for 
Mobile: Practical guide to building 
intelligent mobile applications powered by 
machine learning, 2018. 

[8] Vasco Correia Veloso: Hands-On Artificial 
Intelligence for Android: Understand 
Machine Learning and Unleash the Power 
of TensorFlow in Android Applications 
with Google ML Kit (English Edition), 
2022. 

[9] Benjamin Planche, Eliot Andres: Hands-On 
Computer Vision with TensorFlow 2: 
Leverage deep learning to create powerful 
image processing apps with TensorFlow 2.0 
and Keras, 2019. 

[10] Object detection with Android, 
downloaded from: 
https://www.tensorflow.org/lite/android/tut
orials/object_detection, date: 09.08.2023. 

[11] Windows Subsystem for Linux, retrieved 
from: 
https://en.wikipedia.org/wiki/Windows_Su
bsystem_for_Linux, dated: 22.08.2023. 

[12] Install Ubuntu on WSL2 and get started 
with graphical applications, downloaded 
from: https://ubuntu.com/tutorials/install-
ubuntu-on-wsl2-on-windows-11-with-gui-
support#1-overview , dated: 22.08.2023. 

[13] Enabling GPU acceleration on Ubuntu on 
WSL2 with the NVIDIA CUDA Platform, 
downloaded from: 
https://ubuntu.com/tutorials/enabling-gpu-
acceleration-on-ubuntu-on-wsl2-with-the-
nvidia-cuda -platform#2-install-the-
appropriate-windows-vgpu-driver-for-wsl, 
dated: 22.08.2023. 


	introduction
	NEURAL NETWORKS
	tensorflof
	DATASET FOR NN TRAINING
	NN MODEL TRAINING
	NN MODEL EVALUATION
	Android application for objcet RECOGNITION
	CONCLUSION
	Acknowledgement
	REFERENCE

